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Abstract 

Line profiling of X-ray Bragg peaks has great potential 
for extracting meaningful physical parameters from 
work-hardened single-crystal samples; these include 
both dislocation densities and ordering lengths. How- 
ever, a detailed reading of the existing literature 
uncovered shortcomings in the required theoretical 
understanding of scattering from dislocations. A 
mathematically rigorous theoretical framework is pre- 
sented for understanding dislocation scattering; the 
procedure is based upon first principles of kinematic 
scattering and basic laws of probability theory. These 
results are then applied to the specific case of parallel 
screw dislocations. As expected from experimental 
measurements, the solution to this problem is neither 
Gaussian nor Lorentzian but is 'intermediate' between 
these distributions. Detailed computer simulations of 
the scattering are carried out and compared to the 
theoretical predictions. The predictions match the 
computer simulations with no adjustable parameters. 
Comparisons are also made to the work of previous 
authors. 

1. Introduction 

This paper is motivated by plans to study dislocation 
structure evolution in single-crystal metals deformed in 
situ at the National Synchrotron Light Source (NSLS) at 
Brookhaven National Laboratory. One of the principal 
techniques to be used will be line profiling of X-ray 
Bragg peaks (Mugrabi, Ungar, Kienle & Wilkens, 
1986); to extract meaningful physical parameters from 
these data, a quantitative theoretical model is required. 
The theory of X-ray scattering of dislocations is an old 
subject, and the latest edition of a book by Krivoglaz 
(1996) serves as an excellent review of the previous 
work. Indeed, Krivoglaz, together with Wilkens 
(Wilkens, 1970a,b, 1984), has given the subject its 
current form. 

Krivoglaz & Ryaboshapka (1963) examined scatter- 
ing from an infinite cylindrical sample containing 
spatially uncorrelated screw dislocations with Burgers 
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vectors parallel to the cylinder axis. Because of the 
symmetry of this system, we will refer to it as a two- 
dimensional (2D) dislocation distribution. In so far as it 
went, their analysis was essentially correct, showing 
that for small scattering vector, q, the distribution is 
well approximated by a Gaussian. Later, in his book, 
Krivoglaz (1996) predicts a simple power-law behavior 
at large q. 

In a classic work, Wilkens (1970a) showed that in 
2D, if a finite density of dislocations is embedded in an 
infinite lattice and if the total Burgers vector content of 
the infinite lattice is zero, then the energy per 
dislocation of the system is infinite. That is, the 
dislocation strain fields do not cancel over a distance 
of order equal to the average distance between 
dislocations. Because a physical arrangement of dis- 
locations in a crystal cannot contribute a logarithmically 
divergent energy per dislocation, Wilkens introduced 
the concept of a 'restrictedly random' distribution. In 
this distribution, there exists a lattice block of finite size 
within which the dislocation total Burgers vector is 
zero; the physical crystal is composed of a set of such 
blocks of equal size containing equal total numbers of 
dislocations. Clearly, the energy per dislocation of the 
restrictedly random lattice is finite and proportional to 
the logarithm of the block size. Physically, the Wilkens 
postulate means that any very large crystal will 
eliminate the energy catastrophe by small rearrange- 
ments of its dislocations. In fact, it is thought that any 
deformed crystal will consist of low-energy dislocation 
structures for which the energy singularity is the driving 
force (Kuhlmann-Wilsdorf, 1995). Wilkens found that 
the same kind of logarithmic divergence appears in the 
scattering problem, and proposed the same construction 
for this case. 

Unfortunately, owing in part to some apparent errors 
in one of Wilkens's papers (Wilkens, 1970b), we could 
not follow the details of his derivation (Wilkens, 
1970a,b, 1984) and we were unable to reproduce 
physically correct line shapes for the scattering intensity 
from his solution for screw dislocations. Because of this 
difficulty, the only direct comparison we could make 
between the predictions of Wilkens and Krivoglaz was 
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in the asymptotic behavior of the scattering at large q. 
Unfortunately, Wilkens and Krivoglaz quote very 
different asymptotic behaviors. For all of these reasons, 
and because we must be able to interpret our own 
experimental results, we have developed, and report 
here, a new approach to the dislocation scattering 
problem, starting from first principles of kinematic 
X-ray scattering theory. 

All physical dislocation distributions in crystals are 
three dimensional in the sense that the dislocations are 
almost never straight lines. However, 3D dislocation 
structures pose a major mathematical hurdle in nearly 
all cases and it is likely that a careful analysis of 
scattering from straight dislocations will still prove 
useful in analyzing real data. For these reasons, both 
Krivoglaz and Wilkens worked exclusively with straight 
dislocations and we follow their lead. From the point of 
view of scattering theory, it might ultimately be best to 
base the theory on the scattering of a collection of 
dislocation loops rather than on straight dislocations, 
and some work has been done along this line 
(Krivoglaz, 1996) but, for us, that approach will be 
reserved for the future. 

In this paper, we present a general theoretical 
framework for dealing with the various problems of 
X-ray scattering from dislocations. This framework is 
very different from the approaches taken by Wilkens 
and Krivoglaz and has several distinct advantages. 
First, we believe our statistical approach is more 
mathematically rigorous than previous work in this 
field. Second, our analysis exhibits certain universality 
attributes reminiscent of the central limit theorem of 
probability theory. Thus, the expansion we use 
improves as the number of dislocations, N d, increases; 
for large Nd, higher-order terms become completely 
negligible and only the first-order term is required to 
accurately predict the scattering distribution. 

We next apply our general equations to the specific 
case of screw dislocations. The solution we obtain has 
a character intermediate between the Gaussian and 
Lorentzian forms, and is well approximated by a 
Voigt function (Young & Wiles, 1982). Although 
several similarities exist between our solution and 
those of Krivoglaz and Wilkens, significant differ- 
ences also exist and are discussed. We do, however, 
confirm Wilkens's basic tenet, that the scattering of 
dislocated blocks scales with block size (at fixed 
dislocation density) such that the width of the 
scattering peak diverges logarithmically with block 
size. That is, large blocks lose their coherence. Thus, 
the observed peak profiles in any dislocation X-ray 
scattering experiment contain information on both the 
density (and type) of dislocations and the length scale 
over which ordering has taken place. This connects 
directly to the physical problem of what controls the 
dislocation patterning in a deforming crystal 
(Kuhlmann-Wilsdorf, 1995). 

The theoretical structure of the dislocation scattering 
problem is very complex and requires several important 
approximations. This is true not only for us but for the 
other authors as well. Consequently, comparison 
between the various scattering models must be based 
upon computer simulations. We therefore include in this 
paper a rigorous and systematic comparison of the 
theoretical predictions with computer simulations of 
scattering from model systems. We find that our 
analytic treatment of the scattering problem beautifully 
matches the computer simulations, thus validating our 
theoretical results. Computer simulations will become 
even more essential for treating scattering from edge 
dislocations (work in progress) where many of our 
current approximations no longer apply. 

The work reported here, and the work of Krivoglaz 
and Wilkens to which we primarily relate, is based on 
uniform random distributions of dislocations. The more 
recent work by Krivoglaz (1996) and Wilkens [Groma, 
Ungar & Wilkens (1988); Ungar, Groma & Wilkens 
(1989); see also Ungar & Borbeli (1996) for the most 
recent work] and their collaborators and a particularly 
important work by Gaal (1984) has dealt with the more 
difficult problem of the non-uniform correlations 
between the dislocations. Ultimately, one must confront 
the partially ordered problem. But our purpose here is 
to concentrate on the fundamental mathematical struc- 
ture for dislocation scattering at its simplest level, 
where the analysis can be carried through with a 
minimum of approximation, and to compare it critically 
with computer simulations. After that has been 
accomplished, the more complicated problem of 
scattering from partially ordered dislocation structures 
can be addressed (perforce with significant additional 
approximations, and most desirably in 3D) in the light 
of appropriate computer simulations. 

We stress that our goal is not merely to reproduce 
line shapes from dislocation arrangements. This could 
be accomplished using just the computer simulations. 
Instead, we require a quantitative theoretical model that 
describes the scattering in terms of the physical 
parameters we wish to explore. It is only through such 
a model that meaningful results can be extracted from 
experimental measurements. 

In the next section, we present the general kine- 
matical analysis, propose a way of introducing the 
dislocation statistics and show that this leads to a similar 
expansion of an exponential used by the previous 
authors. Detailed analyses of spatially uncorrelated 
screw dislocations in 2D are presented in §3 and the 
predicted shape is compared to the Gaussian and 
Lorentzian forms. Since nontrivial approximations are 
required for this analysis, in ~ ,  we present computer 
simulations of scattering from dislocated lattices for 
comparison with the analytic predictions. This compar- 
ison is then used to validate the predictions for the screw 
case. §5 summarizes the paper and presents the 
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conclusions. Appendix A presents an asymptotic 
analysis for the tails of the scattering distribution that 
predicts a behavior distinct from the predictions of both 
Krivoglaz and Wilkens. 

2. General kinematic scattering 

We begin with the expression for the scattering intensity 
in the kinematic (single scattering, far field) limit given 
by (Warren, 1990; Krivoglaz, 1996) 

l(q) = S(q)S*(q), (1) 

where q is the scattering vector and S(q) is the lattice 
structure factor, 

S(q) = (I/N0) ~ exp{iq, r(n)} 
n 

--- (1/No) ~ exp{iq, n} exp{iq, u(n)}, 
n 

where N O is the number of atoms, n is a perfect lattice 
vector (we subsume in this sum any additional sums 
over the lattice basis), r(n) is the actual position of atom 
n and u(n) is the displacement at the lattice site caused 
by all of the dislocations in the crystal. In all of these 
equations, we have left out the atomic scattering factors, 
f (q) ,  which we take to be identical. Thus, our l(q) must 
be multiplied byff* to obtain the absolute intensity. The 
normalization chosen relative to N O leads to I(0) - 1 for 
a perfect lattice, which simplifies the equations, but N2o I 
represents the actual intensity of scattering for a finite 
sample (relative to the incident intensity). 

A central problem of dislocation scattering is how to 
deal with the sample size in the previous equation. We do 
this by adopting Wilkens's restrictedly random distribu- 
tion construction; this also allows us to explore the block- 
size dependence of the scattering. Therefore, with him, 
we assume that the lattice is composed of a set (say M) of 
finite-sized blocks, each of the same size and shape, and 
each containing a random distribution of the same total 
number of dislocations, N d. We assume that the scattering 
between the blocks is incoherent, which implies that the 
scattering intensity, I, of the total lattice is a sum of the 
scattering intensities of the individual blocks. 

We will not assign any physical significance yet to 
these blocks, but, presumably, if a deformed crystal 
arranges its dislocations so that the energy per 
dislocation is finite, this arrangement will also destroy 
the scattering coherence between blocks. 

With no approximations, S(q) can be written as a sum 
over M blocks, 

S(q) = (l/N0) ~ exp{iq, m} ~ exp{iq, l} 
m I 

x exp{iq • u(l + m)} 

= (l/N0) ~ expliq,  m} ~] exp{iq. I} 
m I 

x exp{iq • [ui(l + m) + he(! + m)]}, 

where 1 is the ideal position of an atom in a block 
located at m, ui(l + m )  is the displacement due to 
dislocations internal to block m and ue(l + m) is the 
displacement due to dislocations external to the block. 

In our first approximation, we replace the displace- 
ment from external dislocations with an average 
displacement field, Ue(l). An additional term must then 
be added to account for relative rotations and displace- 
ments of the block m. Writing in just the displacement 
term, dm, we obtain 

S(q) = (I/N0) ~ exp{iq. (m +dm)}  ~ exp{iq. 1} 
m I 

× exp{iq. [ui(l + m) + ue(l)]}. (4) 

Using the notation m* = m + d m  and substituting (4) 
into (1) gives 

(2) l(q) = (l/N0 2) ~ exp{iq. [m* - m'*]} 
r n , m  t 

x ~ exp{iq • [l - 1']} exp{iq • ue(l, l')} 
I , l '  

× exp{iq • ui(! + m, 1' + m')}, (5) 

where we define the difference of the displacements at 
sites 1 and l' as u(l, l ' ) =  u ( l ) -  u(l'), with two lattice 
arguments. 

Separating out the m = m'  terms then gives 

l(q) = (1/No 2) ~ exp{iq. [1 - 1']} exp{iq. Ue(l, 1')} 
m . l , l '  

x exp{iq • ui(! + m, l' + m)} 

+ (1/N g) ~ exp{iq. [m* - m'*]} 
i l l , h i  t 

× ~ exp{iq • [! - 1']} exp{iq • ue(l, 1')} 
l , l '  

x exp{iq • ui(l + m, l' + m')}. (6) 

If the scattering from m* and m'* is (close to) incoherent 
as discussed above, then, with the assumption of the 
restrictedly random distribution, the second term in (6) 
becomes negligible and (6) can be rewritten as 

(l(q)) = (M/N2o) ~ exp{iq. [! - !']} 
[,1' 

x exp{iq • ue(l, l')}(A(l, l', q; C)) c, (7) 

where (A} will be called the amplitude function, 

(A(l, l', q; C)) c = {exp{iq. ui(l, !'; C)})c, (8) 

and the average is taken over all possible configura- 
tions, C, of dislocations. This approximation is only 
valid if the number of independent scattering blocks is 
large enough to adequately sample the set of dislocation 
configurations. 

Equation (7) shows that the X-ray scattering intensity 
profile for the whole sample can be determined by the 

(3) proper average over dislocation configurations within a 
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single block. The average over configurations can be 
rewritten as 

(A(l, l', q; C))c = ~-~ P(C)exp{iq . ui(l, l'; C)}, (9) 
C 

where P(C) is the probability of each dislocation 
configuration. 

To this point, the only assumption we have made 
concerning the dislocation distribution is that the 
number of atoms and dislocations within each block is 
the same. We now invoke the 2D approximation alluded 
to in the Introduction, in which the dislocations are all 
parallel to the Z axis and the blocks are infinite in this 
direction. In this case, we only need to consider a 2D 
plane of atoms perpendicular to the Z axis. If the 
dislocations are uniformly distributed within a block as 
independent random variables, then 

P(C) = P(t,)P(t~) . . . . .  P(tNd ) = [1/NR] Nd, (10) 

where N R is the number of sites in a block and P(t) is the 
probability of finding a specific dislocation at a specific 
site t. 

We can then write the amplitude function as 

(A(I, 1', q; C)) c = [1/NR] Nd ~ exp{iq • u(l, 1'; C)} 
C 

- [1/NR] Nd ~ 1-I exp{iq • J(l, 1'; dc)} 
c dc 

= [1/NR] N~ exp{iq. J(l, 1'; t)} , 

(11) 

where we have defined the variable J(l, 1'; dc) to denote 
the relative displacement at sites ! and l' due to a single 
dislocation at ~ and N d is the number of dislocations in 
the block. The sum over all lattice positions, t, in (11) is 
the contribution to (A) from a single dislocation whose 
center is averaged over the lattice, and the power N d 
simply means that the dislocation distribution is 
uncorrelated. Since the above probability distribution 
allows an unphysical superposition of dislocations on a 
single lattice site, this approximation is only valid for 
low dislocation densities (Nd/No) - an approximation 
that is always satisfied in reality. The highest dislocation 
density actually observed in cell walls is Nd/N o ~_ 0.01. 

The external displacement term, ue(l, 1'), is expected 
to be nearly constant over the area of an individual 
block, and becomes a constant phase factor in the 
analysis. We will simply assume exp{ue(l, 1')} = 1. 
Substituting (11) into (7) and rewriting as a double 
integral then gives 

(l(q)) = ( l / V )  2 f expl iq .  ( 1 -  !')}(A(1, !', q; C))cdldl'. 

(12) 

In this equation, we have set M = 1 since we are now 
considering the scattering from a single averaged block 

and V is the volume of a cylindrical block of radius L. 
Symmetry reduces the problem to 2D so the volume 
element becomes a circular cross section. The ampli- 
tude function then becomes 

(A(I, l'q; C)) c = [(a(l, 1', q))t] Nd 

( a ( l , l ' , q ) ) t = ( 1 / V )  f exp{ iq . J ( l , r ; t ) }d t .  (13) 

Since (a(l, 1', q))t is raised to a high power, N d, the 
maximum in the amplitude function will be converted 
into a strong and sharp peak. Our procedure, therefore, 
is to identify the peak in (a(l, l', q)) and then expand 
(,4(1, !', q)) around this point. 

For an arbitrary I and l', the relative displacement 
will be of order unity, so that the phase will vary from 0 
to 2rr as the integration over the dislocation position is 
carried out in (13). Thus, as the dislocation is varied 
from place to place in the block during the integration, 
the integrand will tend to cancel itself for typical 
choices for l and !', and the integral will be small 
compared to V. However, when the lattice sites are 
close together relative to the block size, L, the phase is 
close to zero for nearly all choices of dislocation 
position, and the integral approaches V. Thus, the 
maximum of the amplitude function is at ! = 1' and the 
exponential can be expanded about zero phase. Indeed, 
because N d is very large, the peak character will be 
captured accurately in the lowest-order expansion of the 
exponential. Similar expansions are often used in 
solving scattering problems but the usual justification 
involves displacement fields that decrease with distance; 
this is not true for dislocations where the displacement 
fields remain finite at infinity. The same expansion was 
also used by both Krivoglaz and Wilkens, although we 
believe their justifications for it were not rigorous for 
the above reason. 

Because of the very high peak expected for the 
amplitude function, (A), it is convenient to write it as an 
exponential, 

(A(I, !', q; C)) c = e x p ( - T )  
(14) 

T = - N  z ln(a(l, l', q))t. 

The use of Tcorresponds to a cumulant expansion of the 
scattering (Krivoglaz, 1996). 

The final expression in (11) can easily be generalized 
to handle dislocations of multiple types. For example, if 
we include N f  dislocations of type .4 and Nff 
dislocations of type/3,  then 

(A(l,l',q;C))c4.c~ =[1~No] N2 exp{iq • JA(I, 1'; t)} 

x [l/N0] ~ exp{iq • J~(l, !'; t) 

(15) 
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One use of (15) would be to handle samples with several 
slip systems. 

3. Application to screw dislocations 

In this section, we will apply the procedures introduced 
in §2 to analyze the scattering from restrictedly random 
distributions of screw dislocations. We assume that the 
displacements are given by isotropic elastic theory, 
since anisotropic theory adds a degree of complexity 
that is not desired at this stage. Also, nonlinear core 
effects can be neglected, since the major issues in 
dislocation scattering revolve around what happens at 
large distances. 

Two cases will be examined: (i) B = ~_, b i = 0 and 
(ii) B = Nd. In order to understand the difference 
between these two cases, consider the dislocations in 
pairs. In case (i), each pair will consist of a positive and 
a negative dislocation, while, for case (ii), both 
dislocations will have the same sign. Thus, for each 
pair, using (13) with the shorthand notation p ( t ) -  
q .  t~(l, 1'; t), we can write 

(A (2)) - -  ( 1 / V  2) f exp{ i [p ( t l )q :p ( t2 ) ] }d t  1 dt 2, (16) 

where the upper sign corresponds to B -  0 and the 
lower to B :/: 0. The imaginary part of this integral is 

f sin[p(tl) :F p(t2)] dt~ dt2 

= f sinLo(tt)] cosLo(t2)] dtl dt 2 

:F f sinLo(t2)] cosLo(tl)] dtl dt2, (17) 

which is zero for B -  0; when B # 0, the amplitude 
function is complex. 

Since the scattering vector is very close to a Bragg 
condition, the phase factor in (13) can be written with a 
high degree of accuracy as Q .  t~(l, l'; t), where Q is the 
Bragg scattering vector (Warren, 1990). In the case of 
screw dislocations, both the Burgers vector and the 
dislocation line lie along the Z direction. Thus, 
Q .  t~(l, !'; t) - Qz3(l, !'; t), where Qz = 2rcNB/ao, ao is 
a lattice constant and N B is the order of the Bragg 
reflection (along Z). Thus, we see that reciprocal-lattice 
peaks will only be broadened if they have a component 
in the Z direction. Also, this broadening will be 
independent of both Qx and Qy. 

In the following analysis, it will be important to refer 
frequently to Fig. 1, which shows the coordinate system 
together with the complicated collection of angle 
variables that describe the geometry of the screw 
dislocation problem. Substituting the isotropic approxi- 
mation for displacement from a screw dislocation (Hirth 
& Lothe, 1982) in our geometry gives the phase factor 
a s  

q .  t~(l, !'; t) = Qzb o~(!, 1'; t)/2:ra 0 = N#~(I, 1'; t) 
(18) 

t~ ~, (d / r ) s in (0  - 15), 

where ct(l,l'; t) is the relative angle between the 
dislocation at t and the two sites 1 and 1' (see Fig. 1). 
In the above equation, we used the dipole term in a 
Taylor expansion for o~ and we took the Burgers vector 
to be a lattice vector, so Qzb/ao = 2:rNa. We also 
introduced the variable d - I!' - 11, and the angles 0 and 
15 from the figure. The radius, r, is the distance between 
the dislocation and the point half way between I' and 1, 
r = It - (! + !')/21. 

Since the maximum value of the amplitude function 
occurs at I - 1' in the phase factor, expanding about this 
point gives, with reference to Fig. 1, 

(a) = ( 1 / V ) {  f dt + iN s f a d t -  [(NB)2/2] 

x j 'u2 d t +  [(NB) 4 / 2 4 ]  f O~ 4 dt + . . .  } 

-- 1 + i (NBLd/V)(al )  - [(NBd)2/2V](a2) 
(19) + [(NBd)4/48VL2](a4) + . . .  

(al) = ( l /L)  f [ s in (0- /5 ) / r ] rd r  dO 

(a2) = f [ s in2(0 - /5 ) / r2 ] rd r  dO 

(a4) - -  2L 2 f [s in4(0-/5)/r4]rdr  dO. 

The third-order term is not given because it is nonzero 
only for B # 0. Our treatment of the nonzero B case, 
given in §3.1, is only qualitative because of the difficult 

R 

t 0 

Fig. 1. The integration for the amplitude functions is over a circle of 
radius L. The origin for the integrations is not the center of  the 
circle, it is placed at the center point of  the vector joining the field 
points, 1' and 1. From this origin, the distance to the dislocation at 
the point t is r and has a maximum value R. R is thus a function of 
the integration angle variable 0. The angle subtended by the two 
field points from the dislocation is called a. The angle between the x 
axis and the vector ! ' - 1  is 15. The scattering-vector direction is 
shown as q and the angle from this direction to the x axis is ~'. The 
angle from the scattering vector to the vector 1' - 1 is ~. The latter 
two angles are needed in the Fourier integrals for the scattering 
intensity. 
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analysis, so only the lowest-order (imaginary) term for 
B ¢: 0 is needed. 

The amplitude function can be evaluated by doing the 
integrations over the circle in Fig. 1, using as origin the 
center of the line between the field points, ! and l'. With 
the notation l = 11+l ' l /2,  the cosine law yields the 
relation L E -- R E +/2  + 21R cos 0, from which the 
(normalized) upper integration limit for the radius, r, 
is R/L -- p(O) = - E c o s 0  + (1 - ,~2 sin E 0) 1/2, with 2 = 
l/L. The lower limit is more subtle. For r < d/2, the 
dislocation lies within the circle defined by the field 
points, I and l', and the angle, ct, is large. It will not then 
be correctly described by the dipole assumption in (18). 
Instead, when ot is large, there should be no significant 
contribution to the integral. Thus, we take the lower 
limit to be rlowe r -- d/2 and the integrals become 

Err R 
(al) = ( l /L)  f f [ s in(0- /3) / r ] rdrdO 

0 diE 

2Jr 
= f s in(0-/3)pdO 

0 
2rt 

= cos/3 f sin 8 [ -2  cos 0 + (1 - ,~2 sin E 8)1/2] dO 
o 

Err 
- sin/3 f cos 8 [ -2  cos 0 + (1 - 21 sin 2 0) 1/2] dO, 

0 

from which 

Further, with 

then 

(20) 

(al) : Err sin/3. (21) 

(a2) 

C = (1' - I)/L; ( = ICI 
2 = (1' + I)/2L; 2 = I;cl, 

(22) 

2~r p 

f f [sinE(0 - / 3 ) / r l d rdO  
0 ¢/2 

2n 
f sin2(0 - /7 )  ln(Ep/OdO 
0 
2Jr 
f COS 2 0 l n ( Z P / O d O .  (23) 
0 

integral can be evaluated exactly to This complicated 
give 

(aE) = zr In[(2/0(1 - 22)1/2]. (24) 

In a similar manner, the quartic integrals can be 
evaluated exactly to give 

(a4) = (3rr/~) -- [rr/4(1 -- 22)2113 + 22(1 + sin 4/3)1. 

(25) 

Numerical integration shows that the contribution of 
the 2 variation to the overall results is minor for both 
(a2) and (a4), so we will use only the dominant term 
obtained in the limit 2 -- 0. We then get 

(a) = 1 + iNB(Esin/3 + [(NB()2/2]In((/(o) + . . .  

t0 = 2 exp(-N2/8) .  (26) 

The next step is the integration of the amplitude 
function to obtain the intensity from (12). When the 
total Burgers vector is zero, B = O, the second term in 
(26) is zero, while, for B = Na, all three terms must be 
used. We now carry out the quasi-Fourier sums over the 
amplitude functions to obtain the final intensity 
distribution for both of these two special cases. 

3.1. Zero total Burgers vector, B=O 

From (12), 

(l(q)) = ( l /V)  E f e x p { i q . ( l ' - l ) } ( A ) d l ' d l .  (27) 

In developing this integration, first note that 
Qz" ( ! -  I ' ) =  2teN B, so only the deviation from the 
Bragg q vector (q - Qz) contributes. We note that (A) is 
not a function of l z, so (27) is a 3 function in z, and only 
the integration in the (X,Y) plane is considered; 
throughout the remainder of this paper, q will be 
expressed in units of 2rc/a o. We will write q = Iq - Qzl 
for a variable in this plane. With the variables ( and 2, 
from (22), and the angle variables ~ and ~' from Fig. 1, 
we can write the double volume (area) differential as 
dl dl '  = L4) . (  d( d2 d~ d~'. With this coordinate transfor- 
mation, however, the limits are no longer simple. The 
limits on 2 still go from 0 to 1 but the upper limit of ( 
depends in a complicated way on the angle, much like 
the R variable in Fig. 1. Fortunately, the contribution to 
the ( integration falls off very rapidly with increasing (, 
so the final solution to the scattering problem is 
insensitive to the upper limit, (max- All that is required 
is to ensure that (max is small enough to satisfy the 
various approximations we have made. To illustrate the 
problem, we note that, if ( > (0 in (26), then the log 
term changes sign resulting in an unphysical divergence 
of the integral. Setting ( m a x - - ( 0 / 3  completely solves 
this problem for all cases. Then, noting that (A) is not a 
function of 2 for B -- 0, and taking the first term in the 
expansion for In (,4), we obtain the final solution 

(l(q)) = ( L 4 / V  2) f exp{iq(Lcos~}(A((, 2))(2 d(d2 d~ d~' 

(28) 

and 

~o13 
(I(q)) = 2 f Jo(qfL)exp{[--Nd(NBOE/2lln((o/O}( d( 

o 

to -- 2 exp(--NE/8). (29) 
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J0 refers to the zeroth-order Bessel function. Remember 
that the scalar, q, is the magnitude of the vector 
Iq - Qzl in the (X, Y) plane. We will show in ~4 that this 
solution beautifully matches our computer simulations, 
especially in the tails of the distribution. 

The integration in (29) can only be performed 
numerically. First, we note that this function is 
definitely not a Gaussian. Fig. 2 shows a logarithmic 
plot of the predicted intensity as a function of q2 
(individual points). This plot exhibits a distinct 
curvature whereas a Gaussian would produce the 
straight line shown. This deviation from a Gaussian 
distribution is caused by the logarithmic ( dependence 
in the exponential of (29). For completeness in Fig. 2, 
we also show a plot of a Lorentzian function fitted to 
the proper slope and starting value at q -  0 (upper 
curve). 

The exponential term in (29) is essentially the 
Fourier-Bessel transform of the scattering function, 
(l(q)), and is the term Wilkens focuses on. He obtains 
the same prelogarithmic term we do in the exponential, 
but quite a different term from our logarithm (see 
Appendix 1 of Wilkens, 1970a). He claims (Wilkens, 
1970b), however, that, in an approximation suitable for 
the physical case involved, the function he calls f(r/) 
reduces to a form similar to the logarithm given in our 
(29) [see equation (2.11) of Wilkens, 1970b]. The major 
difference is in how the Bragg order, N B, enters into the 
two different expressions. Thus, in spite of very 
different mathematical approaches, we both come to 
similar (but distinct) predictions for the function we call 
(A). We note at this point that more serious differences 
exist in how we handle the measured intensity distribu- 
tions, but we defer discussion of this point to the 
Conclusions section. 

An important question involves the behavior of the 
scattering as a function of block size. We begin our 
investigation at the top of the scattering peak where 
q - - 0 .  With the change of variable, x = ((/(0) z, (29) 
becomes 

1/9 
([(o)) = ¢:o f x "x dx 

0 (30) 

r~ -- NaN2¢2/4 = NaN 2 e x p ( - N g / 8 ) / 2 .  

Although the integrand has an essential singularity at the 
origin, the integral over this function is finite and well 
behaved. This integral can be estimated by assuming the 
Gaussian approximation of (29), which gives x~ instead 
of x "  in (30). Here, xa is a constant that depends only 
upon N a and NB. This dependence can be determined by 
matching the values of these two functions at the point 
l/r/2, giving an optimized value of  x a = ln(2)/[r/In(r/)]. 
We then obtain 

No(l(O)) = (la(O)) ~- 4/cNZBln{r/ln(r/)/(ln2)}, (31) 

where (In} is the scattering intensity per atom of the total 
sample and c = Na/No is the density of dislocations in 
the sample. This equation, with N B -- 1, is plotted along 
with a numerical evaluation of (30) in Fig. 3, which 
shows that (31) is an excellent approximation over the 
whole range of Na explored. Larger values of N a are 
unlikely to occur since this would imply unphysically 
large dislocation ordering distances. 

Using the above value ofxa allows us to find the 'best 
fit' Gaussian approximation, (lc), for (29), 

(o/3 
(I6(q)) -- 2 f Jo(q(L)exp{[-Nd(Ns¢)z/4]ln(1/Xd)J¢d( 

o 

-- {4/Nd N2 In[r/ln(r/)/(ln2)]} 

× exp{-q2L2/NdNZln[r/ln(r/)/(ln2)]}. (32) 

The functional form of (32) perfectly matches 
Krivoglaz's Gaussian prediction, but some of his 
parameters are different, thus leading to incorrect 
predictions of the scattering. For rough work, one can 
certainly approximate the scattering by a Gaussian. 
However, because the scattering deviates markedly 
from the Gaussian away from the peak, it will be 

i i , , i i i 

"~ ~ ° o ~" -I0 
V 

" ~  ' - 1 2  E q n .  ( 2 9 )  o 

- 1 4  

i . i . 

- 1 6  0 . 0 5  0 . I  0 . 1 5  0 . 2  0 . 2 5  0 . 3  0 . 3 5  0 . 4  
q2 

Fig. 2. Data points show In(l(q)) plotted as a function of q2 using 
equation (29). For comparison, the figure shows Gaussian (straight 
line) and Lorentzian (curved line) curves fitted to the appropriate 
slope and value at q = 0. q is expressed in units of 2~r/a o. 

A 

V 
× 

Bqn. (30) o 

E q n .  ( 3 1 )  - -  

0"110 100  1 0 0 0  1 0 0 0 0  1 0 0 0 0 0  

N~ 

Fig. 3. Plot of (I~(0)) vs the number of dislocations, N a, for fixed 
dislocation density, c. The curved line is the approximate solution 
given by equation (31), while the points were obtained by numerical 
integration of equation (30). 
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important to use the correct shape in any interpretive 
use of scattering data. 

Equation (31) shows that, for fixed c, (la) decreases 
logarithmically to zero as the sample size increases 
without limit. But since the integrated intensity per atom 
must be independent of the sample size, the decrease of 
the peak height to zero requires a corresponding 
divergence of the peak width. This is seen clearly in 
the Gaussian approximation, equation (32). The diver- 
gence of the peak width demonstrates that for a crystal 
with a fixed density of spatially uncorrelated disloca- 
tions, the scattering will become completely incoherent 
as the crystal size grows to infinity. This loss of 
scattering coherence should not be confused with 
problems of beam incoherence. What is happening 
physically is that the displacement fields of randomly 
distributed dislocations decrease the positional coher- 
ence of the atoms. Since the displacement field of a 
dislocation remains finite at infinite distance, the atomic 
coherence completely vanishes for infinite samples 
unless some ordering takes place to cancel these long- 
range displacement fields. The driving force for such 
ordering is the decrease in energy that occurs through 
this cancellation. 

Observationally, one finds that dislocated crystals 
with moderate dislocation density retain distinct dif- 
fraction peaks. We conclude that this coherence arises 
from regions much smaller than the total sample size, in 
confirmation of the Wilkens (1970a) postulate. 

Another important question concerns the asymptotic 
behavior of the scattering. Krivoglaz (1996) proposes a 
q-5 behavior of the scattering for large q, with a 
suggestion about how to derive it. However, following 
his hint, and after looking at our own analysis, we find a 
q-4 asymptotic relation for (29); the argument is 
presented in Appendix A. We also investigated this 
question by integrating (29) numerically and plotting the 
results; Fig. 4 is a logarithmic plot showing both the 

- o 

t ~ a/qo _ 

^ °° Io o o 

0.1 
q 

Fig. 4. ~ log/log plot of equation (29), showing that in the extreme 
wings of the distribution, at least for a limited range of q, the 
scattering curve becomes power-like with a power in the range of 
- 5 ,  as suggested by Krivoglaz. The straight line shows a power 
function, 1/q5 for comparison. See text. q is expressed in units of 
2 rt / ao 

large-q behavior of this equation (points) and Krivo- 
glaz's proposed q-5 behavior (straight line). Numeri- 
cally, the scattering curve converges perfectly to 
Krivoglaz's prediction for the parameters given in the 
figure caption. By varying the parameters, N d and L, 
however, we can obtain equally good agreement with 
our own q-4 prediction. This wandering behavior 
between q-4 and q-5 suggests that the behavior of (20) 
is more complicated than a simple power law for the 
range of q that we were able to explore numerically. At 
larger q, as proven in Appendix A, the behavior must 
ultimately approach q-4. Finally, in both the computer 
simulations and our analytic work, we see no evidence 
for a power as low as q-3 as predicted by Wilkens 
(1970b). Comparison with experimental data is not 
appropriate at this stage since we have not yet included 
the effects of edge dislocations in the analysis. 

3.2. Non-zero Burgers vector (the twisted crystal), 
B # O  

The restrictedly random distribution was introduced 
to eliminate the problem of long-range strains in an 
infinite crystal. This rationale is not valid for the B # 0 
case since the crystal would contain an infinite number 
of unpaired dislocations. However, as will be explained 
in ~4, the averaging procedure we have introduced can 
also describe the scattering from a large (but finite) 
sample containing just one block. We will therefore 
continue our analysis of the B # 0 case using the same 
techniques as used for the B = 0 case. 

When B # 0, the first three terms in the expansion of 
(a) in (26) are taken. As before, substituting this 
equation into (12) and using the T expansion of (14) 
leads to 

(l(q)) = (1/n "2) f exp{i([qLcos ( + NdNs~ sin(t - t')]} 

x exp{-[Nd(Nst) 2/2] ln(to/t)}t2 dt d2 ci~ d~' 

-- ( 1 / ~ )  fexp{ithsin(~ + X)} 

x exp{-[Nd(Nst) 2/2] ln(t0/t)}t), dt d2 d~ d~' 

= (2/Jr) f Jo(ht)exp{[Nd(Nst)2/2] 

x ln(t/t0)}t2 dt d2 d~' 

~_ {4/rrNd N2 In[r/ln(r/)/(ln2)]} 
2n 1 

x f f exp  (-{h2/NdN~B In[r/ln(r/)/(ln2)]}) 
0 0 

x 2 d2 d~'. (33) 

In expanding the various sinusoidal functions in these 
integrations, we have used the following abbreviations: 

h 2 = ( q L -  NdNs2sin~') 2 + (NdNs2cos~') 2 

g = tan-l (qL NaNB,~ sin ~' (34) 

NdNBZ cos ). \ 
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Further, in going to the last approximate equation in 
(33), we have neglected the variation of the logarithm 
with (, using the same approximation that led to a 
Gaussian scattering law for the B -- 0 case. Since we are 
now primarily interested in the general behavior of the 
scattering, this approximation is adequate and it greatly 
simplifies the analysis. 

The scattering is now quite different from the B = 0 
case. Even though a closed-form solution for the final 
integral is not possible for all values of the variables, 
there are two ranges of important behavior, depending 
on the magnitude of qL relative to NdN,~. When 
qL << NdNn, then h 2 ~ Ndz/V~n2 ~ and 

( l ( q ) )  "~ 4/NZN 2. (35) 

The second case is qL >> NaN n when h 2 ~ q2L2.  Then 
the integration is again possible, and takes the same 
form as in the B = 0  case above (in the Gaussian 
approximation): 

(l(q)) ~_ {4/Nd N2 In[r/ln(r/)/(ln2)]} 

x exp{-q2L2/Nd N21n[Oln(r/)/(ln2)]}. (36) 

These two equations thus yield a flat scattering around 
the Bragg peak out to a critical scattering vector, 
q~ ~_ NdNB/L. This critical q simply describes the 
'bending' of the lattice generated by the screw 
dislocations. Around q~, the scattering falls off abruptly 
and converges to the B -- 0 solution. 

The B ~ 0 case has been explored by Barabash, 
Krivoglaz & Ryaboshapka (1976) with equivalent 
results. 

4. Computer simulations 

As discussed in §2, scattering from a restrictedly 
random distribution of dislocations can be found by 
averaging the scattering intensities from many indepen- 
dent blocks. In the computer simulations, therefore, line 
profiles for many different blocks are calculated and 
then averaged. Each block simulation uses a different 
spatially uncorrelated arrangement of dislocations 
whose positions are determined using a random number 
generator. No approximations are made since we use 
(2) directly and evaluate the intensity by computing SS*. 
The lattice sums were carried out for 2D circular 
samples with an underlying square lattice. Typically, 
N O ~ 104. The results will be reported in terms of the 
size parameter, L, expressed in units of the lattice 
parameter, a 0. 

Fig. 5 shows a contour plot of the 001 peak from a 
single circular diffracting region with L -  50a 0 and 
Nd -- 50. The large fluctuations are typical of scattering 
from a spatially random collection of dislocations. 
Averaging a large number of such simulations together 
as described above results in a smooth circularly 
symmetric intensity distribution. We find that, as the 

size of a single simulation increases (with a constant 
dislocation density), the characteristic wavelength of the 
oscillations decreases. Thus, even if a sample contained 
just one macroscopic block, an instrument with a finite 
resolution would perceive only the local average value 
of the scattering. For practical purposes, therefore, the 
radius, L, of our computer simulations can be 
interpreted either as the size of a scattering block 
within a larger sample or as the size of a sample 
containing just one block. The same is true for our 
theoretical formalism. 

Fig. 6 shows scattering results for three cases of 
randomly distributed screw dislocations in a circular 
lattice with B -- 0. As discussed above, these plots are 
intensity averages of simulations from many individual 
blocks. Since the resulting scattering distributions must 
be circularly symmetric about the Bragg peak, we 
display just a single radial cross section. In each of the 
three plots, the solid curves are the theoretical 
predictions from (29) and the individual data points 
come from the computer simulations. Error bars have 
not been included on the points from the computer 
simulations since the size of the error is well 
approximated by the small fluctuations visible in these 
profiles. The parameters used in Fig. 6(a) are 
L- -100a0  and N d-- 100; those for Fig. 6(b) are 
L -- 200a 0 and N d -- 500. In both cases, the 001 peak 
is displayed. The theoretical predictions accurately 
follow the computer simulations in the tails of the 
distributions. At the peaks, we find nearly perfect 
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Fig. 5. Scattering intensity contour plot of a single simulation of a 
circular block containing 50 randomly positioned screw dislocations 
and with L = 50a0 (a 0 is the lattice parameter). The contours are 
very tortuous and fluctuate strongly. When a large number of 
independent simulations are averaged, the fluctuations smooth out 
and the scattering becomes circularly symmetric. Here, q is 
expressed in units of 2rC/ao. 
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agreement in Fig. 6(b) and only a small deviation in 
Fig .  6 (a ) .  A n a l y s i s  o f  m a n y  s u c h  plots  s u g g e s t s  that the 
theoret ica l  pred ic t ions  i m p r o v e  as the n u m b e r  o f  
dislocations increases. This is not surprising since our 
expansion of (A) becomes more accurate as N d 

increases. Fig. 6(c) shows a plot of the 002 peak with 
L = 200a 0 and N d = 500. Although agreement is still 
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Fig. 6. Simulation results for a variety of cases with B = 0, compared 
with equation (29). Each case is averaged over a large number of 
separately randomized simulations. The data points represent the 
computer simulations and the full lines are the theoretical 
predictions from equation (29). In all cases, q is expressed in 
units of 2n/ao. (a) Scattering from a circle of radius 100a 0, with 
100 dislocations and averaged over 10000 simulations. First Bragg 
peak, N s = 1. (b) Scattering from a circle of radius 200ao, with 500 
dislocations and averaged over 5000 simulations. First Bragg peak, 
N e = 1. (c) Scattering from a circle of radius 200a 0 with 500 
dislocations and averaged over 5000 simulations. Second Bragg 
reflection, N s = 2. 

quite good in the tails of the distribution, the overall fit 
is not  as g o o d  as that o b s e r v e d  in the p r e v i o u s  
s imula t ions .  O n c e  aga in ,  a g r e e m e n t  i m p r o v e s  w i th  
increasing numbers of dislocations. 

One final check that must be made concerns our 
prediction that (I(0)) [not (I~(0))] is independent of the 
sample size, L. As shown by (31), we expect (I(0)) to 
depend only upon N d and N B. We have varied L in our 
s i m u l a t i o n s  w h i l e  k e e p i n g  Nd constant  and have  f o u n d  
that (I(0)) is indeed independent of L. 

The  o b s e r v e d  a g r e e m e n t  b e t w e e n  the theory  and the 
simulations is remarkably good. We stress that there 
w e r e  no  adjustable  parameters  in any  o f  the plots .  O f  
course, the agreement can only be investigated for 
sample sizes and dislocation densities that we can do in 
reasonable  t imes  on  current  w o r k  stat ions,  and 
L = 200a 0 was the largest practical lattice for us. 
However, as remarked above, the quality of the 
theoret ica l  pred ic t ion  is l ike ly  to i m p r o v e  as the n u m b e r  
of dislocations increases. We conclude that (29) 
accurately describes the scattering from screw disloca- 
tions with  B --  0 .  

Fig. 7 shows the 001 peak for a circular sample of 
radius 5 0 a  0, w i t h  N d - - 5 0  and B -  50 .  T h u s ,  all  o f  
the dislocations have the same Burgers vector. The 
scattering is approximately constant (though somewhat 
ragged due to the statistics) from q - 0 to a critical qc, 
where a sharp fall-off takes place. As predicted in §3, 
q¢ ~_ Nd/L  = 0 .5 .  Th i s  q¢ c o r r e s p o n d s  quant i ta t ive ly  to 
the lattice 'rotation' induced by B-7/: 0. (The actual 
lattice geometry is not a pure rotation, of course, 
b e c a u s e  t w o  sets o f  s c r e w s  are n e c e s s a r y  to cause  pure  
rotat ion. )  

5. Conclusions 

In this paper, we develop a new approach to dislocation 
X-ray scattering theory based on a straightforward 
application of probability theory. In addition, we make 
central use of the proposition that, for large N, the Nth 
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Fig. 7. Computer simulation of the scattering from a circle of radius 
100a 0 with 50 same-sign screw dislocations (B = 50) and averaged 
over 2000 simulations. As described in the text, the shape of this 
distribution matches the theoretical predictions. 
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power of a peaked function is very strongly peaked. An 
integral over the resulting function is accurately found 
by integrating the lowest-order expansion around the 
peak position. In our case, N = N d is the (large) number 
of dislocations. After developing the general equations, 
they are applied to the problem of scattering by screw 
dislocations in 2D. Analytically, the screw dislocation 
problem turns out to be barely tractable, provided a 
number of reasonable approximations are made. The 
results obtained, even in this simple case, highlight the 
physical features of dislocation scattering in general, 
and will be useful in guiding our approach to the more 
difficult edge dislocation scattering in a subsequent 
paper. 

We have two principal conclusions. First, the 
scattering intensity of a (screw) dislocated crystal is 
non-Gaussian in form, and given very well by (29). 
Computer simulations indicate that the accuracy of this 
solution increases with increasing N d. For the first 
Bragg peak, good convergence to (29) was demon- 
strated at N d ~_ 100; for higher-order Bragg peaks, 
convergence appears to be slower. Second, in a sample 
with fixed dislocation density, as the block size goes to 
infinity, the lattice loses all scattering coherence. These 
conclusions are discussed in turn. 

As expected from previous analyses of experimental 
results (Young & Wiles, 1982), (29) yields results that 
are 'intermediate' between Gaussian and Lorentzian 
distributions. (The results of Young & Wiles, being 
experimental, contained other contributions to the line 
broadening associated with instrumental factors etc., 
which we cannot evaluate. But their non-Gaussian 
results are certainly in line with our predictions, 
suggesting that physical factors, as well as instrumental, 
may have been important. We are indebted to a 
reviewer for bringing up this point.) Deviation from a 
Gaussian solution arises from a proper estimate of the 
lower limit of the integral for (a). Unfortunately, this 
limit also leads to a final solution that can only be 
evaluated numerically. 

Previous authors have made different choices for this 
lower limit. Krivoglaz and Ryaboshapka (Krivoglaz, 
1996; Krivoglaz & Ryaboshapka, 1963) take a limit that 
is independent of the integration variable in our 
equation (29); as discussed in §3, this choice is 
inaccurate but it does allow them to obtain an 
approximate analytic solution that is a Gaussian 
distribution. In our own analysis, where the statistical 
treatment is more rigorous, if we take a lower limit that 
is proportional to the sample size, then we also arrive at 
a Gaussian line shape. There is good physical reasoning 
for such a choice as an approximation: (a2), because of 
its definition as a normalized volume average, must not 
scale with the sample size, a requirement that is possible 
if the lower limit is taken to be proportional to the 
sample size, L. This makes the argument of the 
logarithm term a constant and the final result is found 

to be roughly equivalent to Krivoglaz's approximate 
solution. 

Wilkens (1970a,b), on the other hand, looks very 
hard at this lower limit. Working with what appears to 
be his equivalent of our amplitude function, Ag, he finds 
a very complicated function for our logarithm term, 
ln(¢0/¢), in (29). In a later paper (Wilkens, 1970b), this 
function is greatly simplified to a logarithmic expression 
similar to our own, although several important differ- 
ences in detail still remain. 

Owing in part to errors in Wilkens's published 
geometric factors, we were unable to use his published 
solution to obtain physically realistic line shapes. 
Comparison between our basic definitions and those of 
Wilkens suggests that our differences lie in how we 
relate the functions Ag and (A) to the scattering 
intensity. This, in turn, suggests that the Wilkens 
function Ag should not be functionally equivalent to our 
amplitude function, (A). A final point of contact is his 
published curve [Fig. (2) in Wilkens, 1970b]. When we 
compare that figure with our numerical results as given 
in our Fig. 2, we seem to get a stronger deviation from 
the Gaussian than he reports. To summarize, we have 
been unable to use Wilkens's published equations to 
reproduce physically correct scattering profiles. Also, 
comparisons between his results and our solution, (29), 
show substantial differences in the respective functional 
forms. 

We have also explored the asymptotic behavior of the 
scattering intensity. From (29), we find that the 
intensity varies as ( l (q))(x  1/q 4, which differs from 
both Krivoglaz's (1996) and Wilkens's predictions. 
Numerical integration of (29) was used to examine the q 
dependence at large, but finite, q. Some reasonable 
parameters gave a near-perfect agreement with 
Krivoglaz's q-5 prediction; other reasonable choices 
gave a near perfect agreement with our large-q 
prediction of q-4. This variation suggests that the 
intensity converges so slowly to a power law that our 
simulations were not carried out at a sufficiently large q. 
Although there is some apparent uncertainty between 
the predictions of Krivoglaz and ourselves, we do not 
see the q-3 dependence reported by Wilkens (1970b). 

All of the above results relate to the case B - - 0 .  
When B-~ 0, we find the peak is broadened by the 
lattice 'rotation' contributed by the dislocations in the 
crystal. For significant non-zero content, the peak 
becomes flattened on the top, with a sharp fall-off at a 
q value corresponding to the lattice rotation. In the 
Gaussian approximation we used for this case, the 
wings of the distribution follow the same behavior as 
predicted for the B = 0 case. This same result has 
previously been reported by Barabash et al. (1976). 

The second major conclusion of the paper concerns 
the sample-size dependence of the scattering. Analysis 
of (29) shows that, for a fixed dislocation density, the 
maximum peak height per atom, (la(O)), decreases 
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approximately as 1/In(L). Since the integrated (la(q)) 
for a given Bragg peak must be constant as the sample 
size increases, there exists a reciprocal relation between 
peak height and peak width. Thus, as (la(0)) ~ 0 with 
increasing sample size, the width of the distribution 
must diverge and the sample loses all coherence. 

The above functional dependence of the size scaling 
agrees roughly with both Krivoglaz's Gaussian analysis 
and Wilkens's report that the peak width is approxi- 
mately proportional to ln(cl/2L). This size scaling is a 
direct confirmation of Wilkens's basic thinking regard- 
ing the sample-size dependence of dislocation scatter- 
ing. Thus, in any experimental measurement on a 
macroscopic dislocated sample, a finite peak width 
reflects the length scale beyond which the dislocations 
are not randomly distributed. 

This leads us to a final question regarding the use of 
Wilkens's results for analyzing experimental data. In 
his interpretation of experimental results, Wilkens 
(1984) relies on the shape of the scattering function to 
determine his parameter, M, which is essentially our 
(Nd/Tr) 1/2. He then finds that M is always of the order 1 ! 
This implies that the block size is roughly equal to the 
distance between dislocations. This is a very remarkable 
result and we wonder if this is the correct interpretation, 
for several reasons. First, of course, is our difficulty in 
relating to his scattering intensity function, I(S). More 
fundamentally, we believe that it is dangerous to use a 
functional form originally derived for screw disloca- 
tions to fit experimental data where edge dislocations 
predominate. Also, parameters such as peak heights, 
peak widths and asymptotic tails can be measured with 
some degree of confidence. The exact functional form 
of a curve, however, is likely to be much more sensitive 
to experimental and theoretical details. Therefore, we 
believe it may be more reasonable to base a measure of 
N d on a comparison of peak heights with Bragg order, 
perhaps tempered by considerations of peak shape. But 
this is a point we wish to pursue only after we have 
presented the edge scattering results in a following 
paper. 

In spite of the success we have demonstrated in our 
theoretical treatment of the above scattering problem, 
we must emphasize that a major issue of scattering from 
dislocations remains essentially unresolved. This 
involves the partially ordered nonrandom character of 
dislocation structures in physical systems. In Wilkens's 
original view (Wilkens, 1970a), nonrandomness is 
associated with the block size of his restrictedly random 
distribution. In Krivoglaz's (1996) view and in that of 
Groma et al. (1988), Ungar et al. (1989) and Gaal 
(1984), it is associated with the pair correlations in the 
distribution. Both of these viewpoints have merit, but 
neither approach answers the important question of 
what the measured coherence length really means in a 
physical system. At present, the most feasible approach 
to this problem would be through computer simulations 

of scattering from model systems, a problem to which 
we return in a later work. 

APPENDIX A 

In this section, we develop an asymptotic expansion for 
(29), 

~0/3 
(l(q)) = 2 f Jo(q(L)exp{[-Na(NB()2/2]ln((o/¢)}¢ d(  

o 
pc0/3 

- - (2 /P  2) f xJ0(x) 
0 

x exp{[-NdN~X 2 ln(p(o/X)]/2p 2 } dx, (37) 

where x = p (  and p = qL. As q --~ cx~, the exponential 
function and the integration limits spread out with 
respect to xJ0(x ). We make the crucial assumption that 
when the oscillations in the Bessel function are very fast 
relative to the variation in the exponential, the only 
significant contribution to the integral comes where the 
magnitude of the argument of the exponential is much 
less than 1, 

x << (p /Ns ) [2 /N  d In(pro~X)] 1/2. (38) 

If true, then the exponential can be expanded to give 

Xmax 

(l(q)) "" (2/p 2) f xJ0(x ) 
o 

x { 1 - [NaNZx 2 ln(p(o/X)]/2p 2 } dx, (39) 

where Xma x satisfies the condition in (38). The only q 
dependence in the first integral in (39) is in the upper 
limit. Therefore, as q ~ ~ ,  we can also let Xma x ~ OO 
in this first integral, which then becomes identically 
zero, leaving 

Xmax 

(l(q)) "" (NaNZ /p 4) f X3Jo(x)[ln(x) - ln(p(o)] dx. 
o 

(40) 

We can now pull all of the q dependence out of the 
integrands, allowing us, once again, to set the upper 
integration limits to o~. These integrals can also be 
evaluated exactly, giving 

(l(q)) ,~ 4NdN2/p 4 -- 4rrNEc/LXq 4. (41) 

In this last equation, we remember that c = Nd/(yrL 2) is 
the dislocation density. 

Given the assumption that we can expand the 
exponential in (37), the asymptotic limit given by (41) 
is exact. We must emphasize, however, that the above 
analysis suggests a very complicated behavior for finite 
q. Therefore, it is not surprising that numerical 
integration of (29) for different values of N d and L 
gives apparent power-law behaviors that wander 
between q - 4  and q-5. We note, however, that we 
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never find power-law behavior as low as q-3 as 
predicted by Wilkens (1970b). 
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